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Abstract. Results are presented for phonons in a ID  lattice model superlattice. Each ire. 
quencywcorresponds totwoBlochwavenumbersQ, andp , .  Foro> 0.25.whereoisthe 
ratio of next-nearest to nearest forces, both wavenumbers can be real over some frequency 
range. Dispersion curvesare given anddiscussed for various values oimand of the mass ratio 
mJm, between the components of the superlattice. 

1. Introduction 

The lattice dynamics of superlattices has been the subject of intensive study, both 
theoretical and experimental, for the last ten years; a useful review is given by Sapriel 
and Djafari-Rouhani (1989). Considerable insight isgained from the study of simple I D  
systems, both monatomic and diatomic, with nearest-neighbour forces A I D  superlattice 
consisting of n l  atoms of component 1 followed by n 2  atoms of component 2, repeated 
periodically, has a long period L = (12, + nz)a,  where a is the atomic spacing, assumed 
the same in both components. In consequence a 'mini Brillouin zone' with a boundary 
at n/L = ( n ,  + n2)-'n/a appears. In a reduced-zone scheme, the acoustic and optic 
phonon branches appear folded in the mini Brillouin zone, with gaps related to the long 
period appearing at the zone edges. The higher-order folded acoustic phonon modes 
occur at sufficiently high frequency to be detected by Raman scattering, and indeed the 
appearance of folded-phonon doublets is a characteristic feature of the Raman spectra 
ofgood-qualitysuperlattices. Similarly, optic-phonon doubletsareseen. Thus I D  models 
have considerable value in their own right. Furthermore, the dispersion curves found 
from a calculation based on 3D lattice dynamics can often be replicated by those derived 
from a I D  model with appropriate effective interactions (Molinari 1991). 

We present here a detailed study of the effect of including next-nearest neighbour 
(NNN) forces in a I D  monatomic superlattice. Although some of the effective-interaction 
ID models include next (and indeed further) interactions, their presence has been seen 
only as leading to a modification of the nearest-neighbour (NN) dispersion curves. As we 
shallsee,however, when the ratio CY = C2/Clofnext-nearest tonearest neighbour forces 
is sufficiently large (specifically when CY > 0.25) qualitatively different effects arise. 

We start, in section 2, by reviewing the lattice dynamics of a bulk I D  crystal including 
NNN forces. The main difference from the NN case is that for every frequency w there are 
four allowed values of wavenumber q,  say kq,, kq2, rather than the two values kq,  
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found with NN forcesonly. For low frequency wa/u 4 1, where is the acoustic-phonon 
velocity, q1  is real while q 2  is complex and of the form n/a + iy, withy large. However, 
for a 7 0.25 there is a higher frequency interval in which both q 1  and q2  are real, and it 
is in this interval that the most interesting new effects arise in the superlattice dispersion 
curves. 

Section 3.1 contains the formal results for the superlattice. Within each component 
of the superlatice the atomic displacements may be written as a coherent superposition 
of the four waves exp(+q,x). exp(?q2x). This superposition is given by the JD vector 
(abcqT, where a, b. c and dare  the amplitudes of the four waves. The dynamics of the 
superlattice are contained in the transfer matrix T, which relates the amplitudes in  the 
cell starting at ( e  + 1)L, say. to those in the cell starting at (L. Clearly T is 4 x 4. It is 
derived as a product of matrices F describing transfer of amplitudes across one com- 
ponent andmatrices M describingtransfer acrossaninterface.The latter are found from 
the equations of motion of four atoms. two on each side of the interface. As in  the NN 
lattice, for w,hich T is 2 X 2, T i s  unimodular, det T = 1, so that the eigenvalues satisfy 
A,A2A&,, = 1. I n  addition, since time-reversal invariance applies, the eigenvalues occur 
in two pairs (A ,, Ai’) and ( A 2 ,  A ; ! ) .  Bloch vectors Q,, are related to the eigenvalues by 
exp(iQ,L) = A,,, Therefore, just as there are two wavenumbers q1  and q2 in the bulk 
material, there are two Bloch wavenumbers in the superlattice. Depending on the 
frequency. neither, one or both may be real. 

The formal results of section 3.1 are illustrated in section 3.2with graphs of various 
dispersion curves. Some discussion of the results and their implications is given in 
section 4. 

2. Bulk cr1stal 

We consider the model shown schematically in figure l(a). The equation of motion for 
the displacement U, of mass I I  is 

-mw2ii ,  = C,(i i , ,+,  + U,,-, - 2u,) + C2(u,,+* + u , , . ~  - hi,,). (1) 
The infinite series of equations represented by (1) is solved by the ansatz 

U,( = exp(inqa) 

provided 

“U =2C,(1 -cosqa)+2C2(1  -cos2qa) 

which is conveniently written as an equation for cos 17 where 7 = qa: 

2ncos: q + cos 17 + (CY - 1 - 2a) = 0 (4) 

where 

a2 = mw’/2CI 

a = C,/C, 

Equation (4) has twosolutionsforcos 17, and therefore asstated insection 1 equation 
(3) hasfour solutionsforq, say 2 4 ,  and +q2. I t  iseasilyseen that forsmall R,onlyone 
value of 17 is real, and the other takes the form IT + iy since cos 17 < -1. For o( < 0.25. 
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cell 1 
Figure 1 (U). Bulk I D  next-nearest neighbour (NNN) crystal, w,ith notation defined. (b) 
Superlattice model for seclion 3. Spring constants are the same throughout as in (a). 

Figure 2. Bulk dispersion curves, R venus q = qa for ((I) LI = 0.1 and (b)  a = 1.0. The 
convention for 7 of the form n + iy is that these values are represented as broken curves 
withy as the abscissa measured from q = rz. Dimensionless frequency R is defined in (5). 

there is no frequency interval in which both values of 11 are real. For (Y > 0.25, however, 
both values of '7 are real in the frequency interval 

2 <  R'i 1 + 2 w +  1/8a. (7) 
Solutions of (4) are illustrated in figure 2 for two values of CY. For CY = 0.1 the real-q 

curve is very similar to that found for NN forces, as might be expected, and the complex- 
q curve corresponds to such large y values that its effect on superlattice properties is 
negligible. For (Y = 1 .O, on the other hand, both q values are real over the range (7), and 
even for R2 < 2 they value is fairly small. It will be seen that significant changes from 
the NN superlattice dispersion curves arise for such large values of CY. 

3. Superlattices 

3.1. Formalism 

The model to be considered is defined in figure I(b). The spring constants are taken to 
be the same throughout, with values asshown in figure l(a), so that the twocomponents 
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of the superlattice differ only in their mass values. The equations of motion for an atom 
within component 1 of cell C are satisfied by a superposition of waves involving ql,, 
=q 11, where q ,  , andq,  *are the solutionsofequation (3) with massm,. Thissuperposition 
can be written in two forms: 

U = a L  exp[iq,,(x - C'L)] + b L  exp[-iqll(x - t L ) ]  
+ cL exp[iqI2(x - e L )  + dL exp[-iq,(x - EL)] (8) 

or 

n = a R e x p [ i q l , ( x -  &L - n l a ) ]  + bRexp[- iq , , (x-EL-nla) ]  

+ cR exp[iq12(x - eL - n ,a ) ]  + dR exp[-iq,,(x - CL - f i l a ) ] .  (9)  
The displacements are described by either of the vectors I U L )  = ( u L & L ~ L d L ) T  or 
1 U R )  = (aRbRcRdR)'  which are related by 

I UR) = F, 1 UL) (10) 

fJJ = exp(iq,,d,) f, = exp(-iq;,d,) i , j = l , 2  (11) 

d; = n,a. (12) 

where F, is the diagonal matrix [ f l l f , l ~ 2 f 1 2 ]  with 
. 

The displacements in . component 2 are described similarly by vectors 
, @) = (eLfLgLhL)' or 1 WR) = (eRfRgRhR)T, related by aphase matrix F,. 

The equations of motion of the four atoms at the interface, marked in figure l(b). 
relate 1 WL) to I UR). The result is 

MI  / U R ) =  MIIWL)  (13) 
and likewise at the next interface to the right 

MZ I W R )  = MI I U:+ 1) 

where subscript & + 1 indicates the next superlattice cell and 

The transfer matrix T is defined by 

IUk+i) =TIUb) = Mi1M,F,M,'M,FIIU:). (17) 

Thedeterminant det Tisthe product of thedeterminantsofthematricesshownexplicitly 
in (17); since det F, = 1 

det T = 1. (18) 
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Figurc 3. Superlatrice dispersion curves lorn,  = n2 = 3 for identical components. m l  = m2 
( a )  iy = 0.1 and (b) e= 1.0. The convention lor complex QL of the form iy is that these 
valuesarerepresentedas brokencurveswirhyasrhenegariveofrheabscissameasuredfrom 
Q L  = 0. 

as usual for simple 2 x 2 transfer matrices. Hence the eigenvalues A ,  to &of Tsatisfy 

A1A2AjA4 = 1. (19) 
Bloch's theorem states that solutions of the dynamical equations can be found that 

transform according to the irreducible representations of the translation operator for 
the superlattice period. viz 

I~!+~)=exp( iQL) lUk)  (20) 
Q need not be real, but time-reversal invariance requires that if Q is a root, so is -Q. 
Comparison of (17) and (20) shows that exp(iQL) is one of the eigenvalues of T, so we 
conclude that, as mentioned in section 1. the eigenvalues occur in pairs (A,, A ; ' )  and 
( A 2 ,  A;'), which are related to the two Bloch wavenumbers Q, by 

exp(iQ,L) = A ,  i = 1 . 2  (21) 
In the NN case, it is usually possible to find an explicit expression for the 2 X 2 transfer 

matrix, so that an explicit dispersion relation can be derived from ( 2 2 ) ;  several examples 
are reviewed by Cottam and Tilley (1989). We have used ii symbolic algebra package 
(Macsyma) to find the analyticformsof the elementsofTfor t h e N N N  case; theexpressions 
are given elsewhere (Hadizad 1991). However, the analytic form of the dispersion 
equation is very cumbersome, and it  is easier to calculate graphs direct from the matrix 
equations presented in this section and the previous section. 

3.2. Numerical results 

In this section we illustrate the results of section 3.1, with a variety of dispersion curves. 
We follow convention by presenting these as frequency w versus wavenumber Q. 
However, the numerical work is very much easier if w is regarded as the independent 
variable, so that the two Bloch wavenumbers Q are evaluated for each value of w .  
The procedure is as follows. For a given parameter a. and for each U ,  the four bulk 
wavenumbers qji are evaluated from (4). This enables determination of the interface 
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Figure 4. Real parts of dispersion curves ior 3 t 3.4 t 4 and 6 t 6 superlattices with ~ t '  = I 
andidenticalromponents.m, = ml.The realpartofthew= 1 bulkdispersioncurve isalso 
shown,with the3 t 3foldingindicdted.The horizontalscale for thebulkgraphiscompressed 
by a factor 3. 
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Figures. Dispersioncurve fora 3 t 6superlattice 
with m, = miand o( = 1.0. 

Figure6. Dispersioncurre fo ra3  + 3 superlattice 
with (Y = 0.1 and m2/m,  = 0.6. 

matrices M,, defined in (15). then given values of n ,  and nl the phase matrices can be 
found from (10). T is then evaluated from (18), and the eigenvalues are found in a 
standard way. Finally the Bloch wavenumbers are given by (22). 

I t  is helpful to start with the dispersion curves for the case when the two superlattice 
components have identical masses, m I = m2. This is the equivalent of the free-electron 
model in electron-band theory, so that the bulk dispersion curve is folded into the 
mini Brillouip zone without any stop bands appearing. This is illustrated for the 3 + 3 
superlatticefore= 0.1 andcu = 1 infigure3,whichshowsthefoldingofthereal-qcurve 
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Figure 7. Dispersion curves for a 3 t 3 super- 
lattice with II = 1.0 and mJm, = 0.9 ( U ) .  0.7 (b)  
andO.j(c). 

of figure 2. In addition, the complex root of the form iz + iy is 'folded' to the form iy. 
The folding is further illustrated in figure 4, which shows the real-Q curves for the 4 + 4 
and6 + 6superlatticesinadditiontothe3 + 3superlatticeforn = 1. Weshowinparallel 
the real-q bulk dispersion curve for n = 1. with an indication of how the different parts 
are folded to give the 3 + 3 curves. The fact that the complex root JE + iy folds to iy for 
the 3 + 3 superlattice is simply a consequence of the fact that there is an even number 
of atoms in the superlattice unit cell; for an odd number the folding is to n + iy. as 
illustrated in figure 5 for the 3 + 6superlattice with m,  = m2. 

For m ,  # m2 stop bands appear in the dispersion curve. When the NNN force is weak, 
the modification of the real-Q branches is very similar to what is known for the NN case, 
andas withm, = rn2 thecomplex rootsremain well awayfrom the real axis. Anexample 
is shown in figure 6. 

The effect of varying the mass ratio for a larger value of n is illustrated in figure 7. 
The curves there are clearly related to that shown in figure 3 by the introduction of stop 
bands both at the zone edges and also at crossing points between different branches. 
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Equation (21) may be used to express the behaviour of the Bloch wave vector Q in the 
various stop bands in terms of the underlying eigenvalue A of the transfer matrix T. Real 
Q corresponds lo eigenvalues h and A-' on the unit circle. An excursion Q L  = n + iy, 
represented on a graph to the right of the mini Brillouin zone, corresponds to an 
excursion of A off the unit circle along the negative real axis from A = A-' = -1, say 
A < -1 and -1 < A - ,  < 0. Similarly QL = iy, represented as a graph to the left of the 
mini Brillouin zone. corresponds to an excursion of h along the positive real axis. A > 1 
and0 < A - [  < 1. WithinastopbandlikeABinfigure7(a)therearestillfoureigenvalues 
A i , A i ' . 2 , 2 , A ; '  ofT.  A, andA2coincideatA, thenundergoexcursionsofftheunit circle 
as sketched in the insert to figure 7(a). Comparison of figures7(a). 7(b) and 7(c) shows 
that, as might be expected, the frequency widths of the stop bands increase as m2/m, 
deviates further from unity. Over most of the frequency range Q < 1.7, however. the 
pure imaginary root Q L  = iy is more or less independent of the value of m2,",. 

4. Discussion 

As might be expected. the introduction of weak NNN interactions produces only small 
perturbations to the well-known results for the NN case. I n  principle a second Bloch 
wavevector Q appears. but it is seen from figures 3(n) and (b) that it is typically quite far 
off the real axis. A Q having such a large imaginary part corresponds to displacements 
that decay rapidly with distance from an interface, and therefore has little physical 
significance. For stronger interactions, (Y CJC, > 0.25, however. the bulkdispersion 
curve has a maximum within the Brillouin zone, and therefore there is a range of 
frequencies for which the phonon dispersion curve has two real \,slues of q for a given 
w .  Thisisillustrated i n  figure2(b). Inconsequence thefoldinginduced by the superlattice 
period,asinfigures3(b),and4,producesamore involvedspectrum. with two real Bloch 
vectors Q appearingover an extended frequency range. As the mass ratio m2/m I deviates 
from unity, stop bands appear in the superlattice dispersion curve. In addition to the 
stop bands at QL = 0 and ,7, familiar from the NN case, stop bands can also appear at an 
interior point ofthemini Brillouinzone, like the band AB inAgure7(a). Surface modes, 
in which the vibration amplitude decays with distance from the surface of a semi-infinite 
superlattice. may be expected to appear within the stop bands. 

We have concentrated on the formal differences due to the introduction of NNN 
interactions. in particular the appearance of a second Bloch wavenumber and the more 
complicated mode patterns that arise for cy > 0.25. I t  is to be hoped that these forms of 
folded acoustic modes might be studied by Raman scattering. 

The present calculations can be extended to diatomic superlattices, where the pres- 
enceof the optic-phonon bands leads to considerable complications. We hope to present 
results for this case shortly. 
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